## THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.





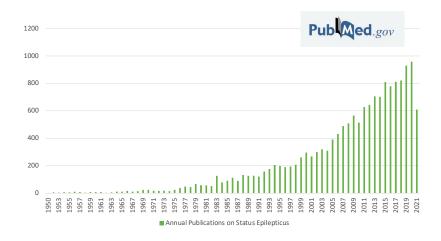
# **Status Update**

What's new in the Management of Status Epilepticus?

Wolfgang Muhlhofer, MD Assistant Professor | UAB Epilepsy Center

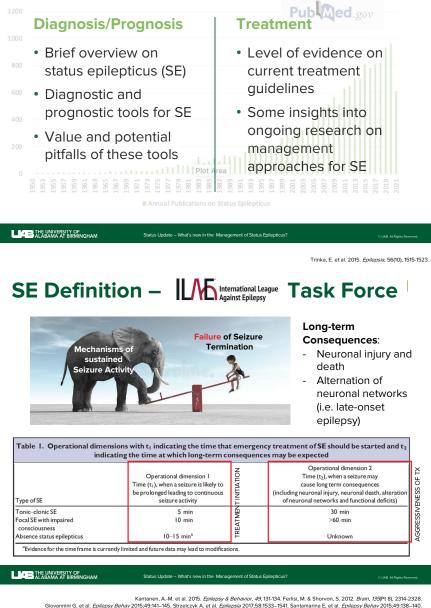
## Disclosures

No conflict... ...only interest.


Site-PI for Eisai Inc. sponsored Phase 4 trial on safety and tolerability of Perampanel as monotherapy or first add-on therapy.



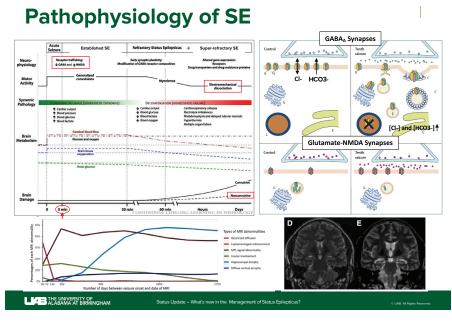
"So, I'm the only one who sees a conflict of interest here?"


THE UNIVERSITY OF ALABAMA AT BIRMINGHAM Status Update – What's new in the Management of Status Epilepticus?

# Publications on SE since 1950

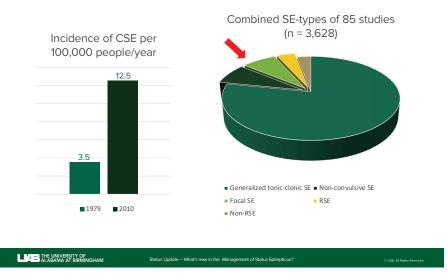


UPERIA Status Update - What's new in the Management of Status Epilepticus? O LUAR. At Repts Baserved.


## **Learning Objectives**

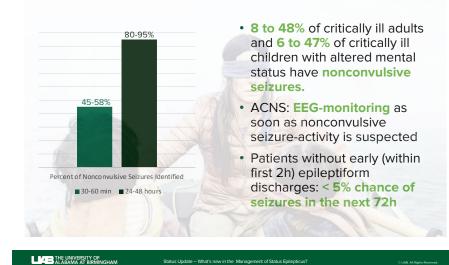


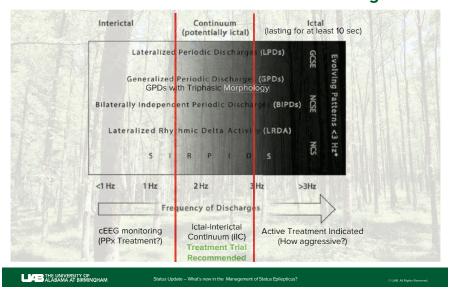
# SE Treatment (Tx) Progression




Hirsch, LJ. Et al. CONTINUUM 19(3, Epilepsyl;767-794, June 2013. Chen, J. W. Y. 2006. The Lancet Neurology, 3(3), 246-256. Chen, J. W. Y. at al. 2007. Acta Neurologica Scandinavica 119;186), 745. Murdoch, D. 2007. Current opinion in neurology, 20(2), 213-216. Kim et al. 2020. Epilepsia. 2020;61:735–748




Sadeghi et al. Seizure. 81 (2020) 210-221. Lu et al. Epilepsy & Behavior .112 (2020) 107459.

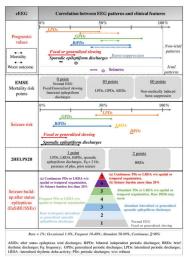

# **Epidemiology of SE**



Young, B. G. et al. 1996. Neurology, 47(1), 83-89. Hirsch, L. J. et al. 2005. Journal of clinical neurophysiology, 22(2), 128-135. Towne AR et al. Neurology. 2000;54(2):340-345. Alvarez, V. et al 2015. Epilepsia, 56(6), 933-941.

## NCSE: You can only treat what you can see






## The Problem with continuous EEG Monitoring

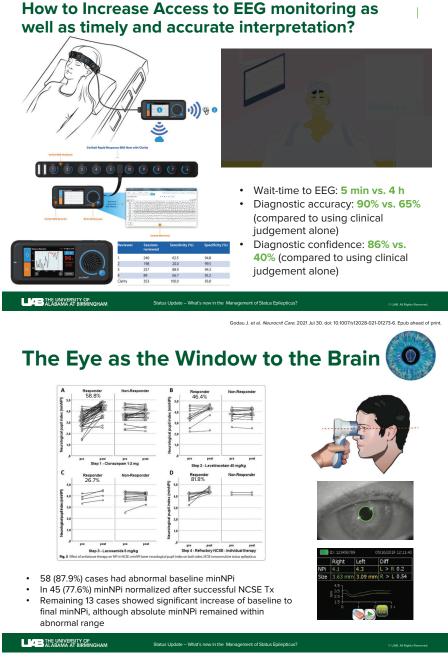
Rossetti, A. O. et al. 2006. Neurology, 66(11), 1736-1738. González-Cuevas, M. et al. 2016. European journal of neurology, 23(10), 1534-1540. Leitinger, M. et al. 2015b. Neurocritical care, 22(2), 273-282. Gao et al. 2016. Critical Care (2016) 20:46. Hanin, A. et al. Neurophysiologie Clinique 51.2 (2021); 101-110.

# Evolution of SE Prediction Scores

- Status Epilepticus Severity Score (STESS-3): Level of consciousness upon presentation, SE type, previous h/o seizures, age (>65) – mSTESS-3 including premorbid mRS
- Epidemiology-Based Mortality Score of SE (EMSE-64): SE etiology, age, comorbidities and worst EEG pattern
- Encephalitis-NCSE-Diazepam resistance-Image-abnormalities-Tracheal intubation (END-IT-3) Score: encephalitis, NCSE, diazepam resistance, image abnormalities (unilateral lesions, bilateral lesions or diffuse cerebral edema) and intubation
- 2HELPS2B Score: prior seizure and EEG patterns (range 0 to 7 covering 5 to 95% risk for seizure

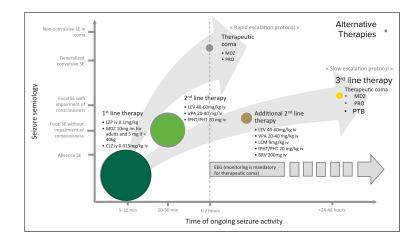


THE UNIVERSITY OF ALABAMA AT BIRMINGHAM


Rosetti et al. JAMA Neurol. 2020;77(10):1225-1232

# Continuous EEG<sup>1)</sup> vs. Routine EEG<sup>2)</sup>

<sup>1)</sup> 30-to-48-hour recording; <sup>2)</sup> two 20-to-30 min recordings within 48 hours


|                                                                                                       | No. (%)                |                     |                           |         |  |
|-------------------------------------------------------------------------------------------------------|------------------------|---------------------|---------------------------|---------|--|
| Outcome                                                                                               | rEEG<br>(n = 183)      | cEEG<br>(n = 185)   | Relative risk<br>(95% CI) | P value |  |
| Features of ictal-interictal continuum detected,<br>without seizures/SE                               | 102 (55.7)             | 128 (69.2)          | 1.24 (1.06-1.46)          | .009    |  |
| Seizures/SE detected                                                                                  | 8 (4.4)                | 29 (15.7)           | 3.59 (1.68-7.64)          | .001    |  |
| Changes in antiseizure drug prescription within 60 h following start of EEG intervention <sup>b</sup> | 21 (11.5)              | 39 (21.1)           | 1.84 (1.12-3.00)          | .01     |  |
| Changes in sedation prescription within 60 h following start of EEG intervention <sup>b</sup>         | 8 (4.4)                | 13 (7.0)            | 1.61<br>(0.683-3.79)      | .27     |  |
| Need of additional EEG after intervention                                                             | 41 (22.8) <sup>c</sup> | 56 (31.1)           | 1.37 (0.97-1.93)          | .08     |  |
| In-hospital infection requiring antibiotics                                                           | 56 (30.8)              | 47 (25.7)           | 0.82 (0.61-1.11)          | .20     |  |
| Length of ventilation need, median (range), h                                                         | 123 (0-837)            | 138 (0-1214)        | NA                        | .47     |  |
| Length of hospital stay in survivors, median (range), d                                               | 25.3<br>(2.6-393.3)    | 24.5<br>(1.4-161.1) | NA                        | .84     |  |
| Time to death since randomization, median (range), d                                                  | 8.5 (0-157)            | 6 (0-176)           | NA                        | .07     |  |

Vespa, PM. et al. Critical care medicine/48.9 (2020); 1249. Hobbs, K et al. Neurocritical care 29.2 (2018); 302-312. Wright, NMK et al. Emergency Medicine Journal (2021), Kamousi. Baharan, et al. Neurocritical Care 34.3 (2021); 908-917.



Rossetti, Andrea O., and Vincent Alvarez. Current Opinion in Neurology 34.2 (2021): 172-181.

# Suggested SE Treatment Algorithm



# First Line Treatment: Benzodiazepines

| Agent                                                              | Dose<br>(maximum)     | Route                              | Onset<br>(min) | Duration of<br>Action | Bioavailabiliity<br>(%) | Volume of<br>Distribution<br>(L/kg) | Metabolism                       | Excretion                  | T1<br>05 |
|--------------------------------------------------------------------|-----------------------|------------------------------------|----------------|-----------------------|-------------------------|-------------------------------------|----------------------------------|----------------------------|----------|
| Lorazepam<br>(Ativan®                                              | 0.1 mg/kg<br>(4 mg)   | IV                                 | 1.6            | 4-6 h                 | 100                     |                                     |                                  | Hepatic                    |          |
| Injection)                                                         | (4 mg)                | IM                                 | 12-19          | 4-014                 | 83-100                  | 1.3                                 | Liver to inactive                | metabolism                 | 1        |
| Lorazepam<br>(Ativan<br>Intensol <sup>®</sup> )                    | 0.1 mg/kg<br>(4 mg)   | SL                                 | Readily        |                       | 90                      |                                     | metabolites                      | to inactive<br>metabolites |          |
| Lorazepam<br>(Ativan <sup>®</sup><br>Sublingual<br>tablets)*       | 0.1 mg/kg<br>(4 mg)   | SL                                 | 15-17          |                       | >90                     |                                     |                                  |                            |          |
| Midazolam<br>(Versed <sup>®</sup> )                                | 0.2 mg/kg<br>(10 mg)  | IV                                 | 1.5-2.5        | 30-80 min             | 100                     |                                     |                                  |                            | 3        |
| Midazolam<br>(Versed <sup>®</sup> )                                | 0.2 mg/kg<br>(10 mg)  | IM                                 | 5-15           | 2-6 h                 | >90                     | 1-3                                 | CYP3A4 to active<br>metabolite   | Renal                      | 3        |
| Midazolam<br>(Nayzilam <sup>®</sup> )                              | 0.2 mg/kg<br>(15 mg)  | IN                                 | 3-10           | 23 min                | 44                      | 10                                  |                                  |                            | 2        |
| Midazolam                                                          | 0.2 mg/kg<br>(15 mg)  | IV<br>injection<br>given IN        | 6-14           | -                     | 44-83                   |                                     |                                  |                            | 2        |
| Midazolam<br>(Buccolam <sup>®</sup> ,<br>Epistatus <sup>®</sup> )* | 0.5 mg/kg<br>(30 mg)  | Buccal                             | 5-15           |                       | 75-87                   |                                     |                                  |                            | 3        |
| Midazolam<br>(Versed <sup>®</sup> )                                | 0.5 mg/kg<br>(30 mg)  | IV<br>injection<br>given<br>Buccal | -15            |                       | 75                      |                                     |                                  |                            |          |
| Diazepam<br>(Valium <sup>®</sup> )                                 | 0.15 mg/kg<br>(10 mg) | IV                                 | 1-3            | 15-30 min             | 100                     |                                     | CYP2C19 and                      |                            | 33-      |
| Diazepam<br>(Valium <sup>®</sup> )                                 | -                     | IM                                 | ~15            | -                     | >90                     | 0.8-1.2                             | CYP3A4 to active<br>metabolities | Renal                      | 60-      |
| Diazepam<br>(Valtoco <sup>III</sup> )                              | 0.2 mg/kg<br>(20 mg)  | IN                                 | 2-10           | 15-30 min             | 97                      |                                     | metabolites                      |                            | ~        |
| Diazepam                                                           | 0.2 mg/kg<br>(20 mg)  | IV<br>injection<br>given IN        | 1-10           | -                     | Up to 74                |                                     |                                  |                            | 17-      |
| Diazepam<br>(Diastat <sup>®</sup> )                                | 0.2 mg/kg<br>(20 mg)  | PR                                 | 2-10           | 15-30 min.            | 90                      |                                     |                                  |                            | ~1       |
|                                                                    |                       |                                    |                |                       |                         |                                     |                                  |                            |          |
| -                                                                  | NS Characteri         | ation                              |                | Loraze                |                         | Diazepam                            | Midaz                            |                            |          |
| _                                                                  |                       | sucs                               |                |                       |                         |                                     |                                  |                            |          |
|                                                                    | ipophilicity          |                                    |                | Lo                    |                         | High                                | Hig                              |                            |          |
|                                                                    |                       |                                    |                | Lor                   |                         | Short                               | Sho                              |                            |          |
|                                                                    | CNS penetration       | n                                  |                | Slo                   | w                       | Fast                                | Fac                              | 54                         |          |

 $3.8 \pm 3.1$  $28.3 \pm 10.1$  Level A evidence for SE Treatment

- Associated with lower mortality and morbidity, lower use of ASM upon arrival at hospital, shorter seizure-duration
- Most effective within first 30 min (the sooner the better)
- Respiratory complication: 1-18%
- Somnolence: 1.5-68%
- · Desired pharmacokinetic profile:
  - Easy and fast to administer
     Fast onset (high and reliable bioavailability, good CNS penetration)
  - Limited duration of side-effects
  - Low chance for breakthrough Sz's

UTE UNVERSITY OF Status Update – What's new in the Management of Status Epilepticus? Cude. At Repts Reserved.

 $0.29 \pm 0.04$  $6.3 \pm 1.9$ 

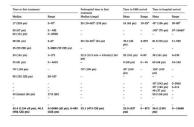
0.89 ± 3.1 7.5 ± 1.4

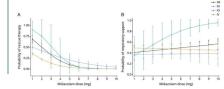
Almohaish et al. 2021. J. Clin. Med. 2021, 10, 1754.

## **Benzodiazepines: Route of Administration**

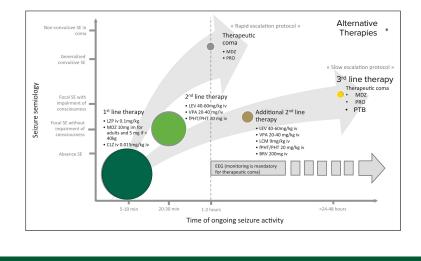
| Route                 | Advantages                                                                                                                                                                                                                                              | Disadvantages                                                                                                                                                                                                 | $\omega \sim 1$                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Intravenous           | Fastest onset of action     No bioavailability concerns     Bypass first-pass metabolism     Large volume can be administered     Reliable route for sedated or comatose     patients                                                                   | Highly trained individuals required to<br>administer     May require physical restraint     Injection site irritation, extravasation, or infection     Development of tolerance with continuous     infusions | A REAL                                         |
| Intramuscular         | <ul> <li>Bypass first-pass metabolism</li> <li>Prolonged action</li> </ul>                                                                                                                                                                              | Trained individuals required to administer     May require physical restraint     Painful     Variable absorption     Injection site irritation or infection     Limited volume can be administered (2-5 mL)  | VALTOCO Navzilam                               |
| Intranasal            | Easily administered     Rapid absorption     Bypass first-pass metabolism     Direct drug delivery to     blood-brain-barrier                                                                                                                           | <ul> <li>Small volume (≤0.2 mL) hard to measure</li> <li>Short retention time</li> <li>Nasal discharge may alter the absorption</li> <li>Nasal irritation</li> </ul>                                          | tdiazepamnasal spray)€ (midazolam) nasal spray |
| Buccal and Sublingual | <ul> <li>Rapid absorption</li> <li>Bypass first-pass metabolism</li> <li>Low risk of infection</li> </ul>                                                                                                                                               | Variable absorption     Unpalatable     Challenging to place and maintain in the correct location     Risk of aspiration                                                                                      | ( C) (C)                                       |
| Rectal                | <ul> <li>Bypass first-pass metabolism</li> <li>Ease of administration in infant<br/>emergencies</li> <li>Low risk of infection</li> </ul>                                                                                                               | Rectal irritation or proctitis with ulceration     Less convenient for adults                                                                                                                                 |                                                |
|                       | device-combination designed to deliver a/prazolam<br>o rapidly terminate an epileptic seizure<br>Potential to be the first on demand, single use treatmer<br>Rapid seizure termination (10 sec – 2 min)<br>Physe 20 clinical trait combined feed 2015): | Diastat'AcuDial"                                                                                                                                                                                              |                                                |
|                       | Phase 2b clinical trial completed (end 2019);<br>phase 3 to start H2 2021     Potential to deliver on-demand, rapid seizure<br>termination for 20 – 30% of people living with epilepsy                                                                  |                                                                                                                                                                                                               | Ser Barrier Street                             |
|                       | DF                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |                                                |

Guterman, EL. et al. Neurology 95.24 (2020): e3203-e3212. Gainza-Lein, M. et al. Seizure 68 (2019): 22-30. Kämppi, L. et al. Seizure 55 (2018): 9-16.


# Treatment Hesitation at a High Price?


### **Treatment Delay**

- Decreased response to benzodiazepines
- Need for recurrent doses of rescue therapy
- Prolonged seizures
- Greater need of continuous infusions
- Potential brain injury
- Increased in-hospital mortality


### Underdosing

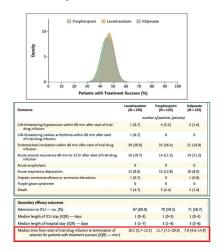
- Increased need for respiratory support (i.e. intubation)
- Increased admissions to ICU





# Suggested SE Treatment Algorithm




C UNE AR Reprint Provided Art BRMINGHAM Status Update – What's new in the Management of Status Epilepticus?

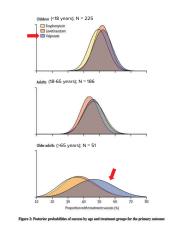
Kapur et al. 2019. NEJM 381(22), 2103-2113.

## Second Line Treatment: Nonsedating Anitseizure Medications (established evidence)

### Established Status Epilepticus Treatment Trail (ESETT)

- 384 patients with established CSE enrolled and randomly assigned to:
  - Levetiracetam (145 patients)
  - Fosphenytoin (118 patients)Valproate (121 patients)
- Primary Outcome: Cessation of clinical seizure-activity and
- improving mental status within 60 min after administration
- <u>Secondary Outcomes</u>: - Time to termination of clin
  - Time to termination of clinical seizures
  - Rates of intubation
  - Admission to ICU
  - Mortality




### LABAMA AT BIRMINGHAM

Chamberlain, JM. et al. The Lancet 395.10231 (2020): 1217-1224. Dalziel SR. et al. Lancet. 2019;393(10186):2135-2145. Lyttle MD. et al. Lancet. 2019;393(10186):2125-2134.

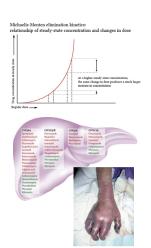
ent of Status Epilepti

## Second Line Treatment: Nonsedating Anitseizure Medications (established evidence)

Status Update – What's new in the Manage



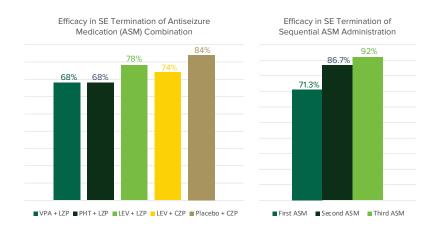
### **ESETT Subgroup Analysis**


- · Extending enrolment for children
- Primary outcome: same as ESETT
- Safety outcome(s): life-threatening hypotension, cardiac arrhythmia, intubation.
- Enrolled 478 patients and 462 included in analysis:
  - Levetiracetam (175 patients)
  - Fosphenytoin (142 patients)
  - Valproate (145 patients)

### ConSEPT and EcLiPSE Trial

- Open-label trials comparing efficacy of Phenytoin (PHT) vs Levetiracetam (LEV) as 2<sup>nd</sup> line in children with SE
- ConSEPT PHT: 60% vs LEV: 50%
- EcLiPSE no significant difference

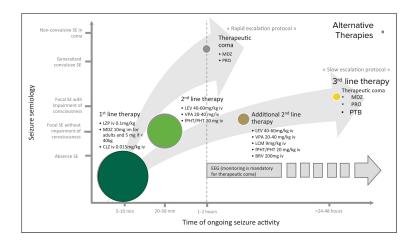
## The Slow and Agonizing Death of Phenytoin


- Narrow mechanism of action
- Complex pharmacokinetics and pharmacogenomics
- Drug-drug interactions
- Unique adverse effects
- Formulation issues that make administration difficult



LCB THE UNIVERSITY OF ALABAMA AT BIRMINGHAM Status Update – What's new in the Management of Status Epilepticus? CUMA AN Birdin Brewned

Mundlamuri RC. et al. Epilepsy Res. 2015;114(1):52-58. Navarro, V. et al. The Lancet Neurology 15.1 (2016): 47-55.


## Efficacy of Combined and Sequential Treatments



| Status Update – What's new in the Management of Status Epilepticus? | C UAB. All Rights Reserved. |
|---------------------------------------------------------------------|-----------------------------|
|                                                                     |                             |

Rossetti, Andrea O., and Vincent Alvarez. Current Opinion in Neurology 34.2 (2021): 172-181.

# Suggested SE Treatment Algorithm



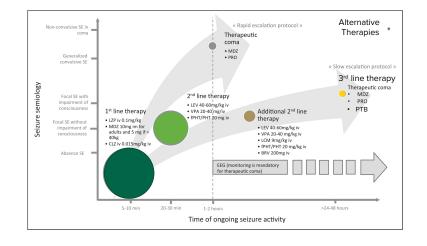
## Second Line Treatment: Nonsedating Antiseizure Medications (weak evidence)

### Lacosamide (Vimpat; LCM)



- Treatment of Recurrent Electrographic Nonconvulsive Seizures (TRENdS):
  - Total of 74 randomized patients
  - LCM 400 mg vs. fPHT 20 mg/kg
  - Primary outcome: Sz-absence for 24 hours
- Sz-control:
  - LCM: 63.3%
  - fPHT: 50%
- Treatment emergent adverse events ~25% in both arms (LCM: dose-dependent AV-block)
- LCM non-inferior to fPHT in treatment of recurrent nonconvulsive seizures

### Brivaracetam (Briviact; BRV)




- No controlled trials available
- Review of 7 studies with 37 patients including case reports
- Efficacy: 27 to 50%
- Time to effect: 15 min to 94 hours
- No serious adverse events
- Yet, highly variable dosing, medication order and treatment delay
- Concern: decreased efficacy with coadministration of LEV

#### Status Update - What's new in the Manag

Rossetti, Andrea O., and Vincent Alvarez. Current Opinion in Neurology 34.2 (2021): 172-181

# Suggested SE Treatment Algorithm



THE UNIVERSITY OF

Glauser, T. et al. 2016. Epilepsy currents, 16(1), 48-61. Brophy, G. M. et al. 2012. Neurocrit Care, 17(1), 3-23.
Melerkord, H. et al. 2010. Eur J Neurol. 17(3), 348-355. Vossler, DG, et al. Epilepsy currents, 20.5 (2020): 245-264.

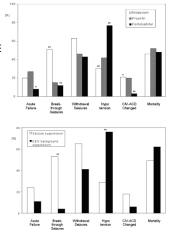
## **Third Line Treatment: Therapeutic Coma**

## Neurocritical Care Society Neurocritical Care Society

"The intensity of treatment is usually dictated by cEEG findings, with the goal of treatment being cessation of electrographic seizures or burst suppression. [...] The optimal duration of maintaining electrographic seizure control in patients with RSE is not known since there are few data to indicate what duration of treatment is needed to maintain control. Customarily, electrographic seizure control is maintained for 24-48 h, followed by gradual withdrawal of the continuous infusion AED." (2012)

### European Federation of Neurologic Societies

"Depending on the anaesthetic used in the individual in-house protocol, we recommend titration against an EEG burst suppression pattern with propofol and barbiturates. If midazolam is given, seizure suppression is recommended. This goal should be maintained for at least 24 h." (2010)


## American Epilepsy Society



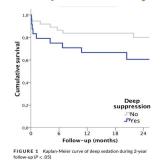
"There is no clear evidence to guide therapy in the 3<sup>rd</sup> phase (40 to 60 min into SE)." (2016) – "[...] mostly insufficient evidence exists on the efficacy of stopping clinical CRSE using BRV, LCM, LEV, valproate, KET, MDZ, PTB, and PRO either as the last ASM or compared to others of these drugs. Triplemasked, randomized controlled trials are needed to compare the effectiveness of parenteral anesthetizing and nonanesthetizing ASMs in the treatment of CRSE." (2020)

# **Studies on Therapeutic Coma for RSE**

- Usual 1<sup>st</sup> Line: Propofol (PRO) or Midazolam (MDZ) drip (advantage: "quick and out")
- Pentobarbital (PBT) tends to be utilized for SRSE
- · Continuous EEG is essential for assessment of treatment response
- Adverse Effects:
  - Hypotension common problem (need for vasopressors) PRO infusion syndrome (PRIS): acute refractory bradycardia/asystole, fatty liver, rhabdomyolysis,
  - hyperlipidemia PBT – Propylene glycol toxicity: ARF, refractory hypotension, lactic acidosis, arrhythmias
- Mainly class 2a/2b: regardless of anesthetic
- used, suppression of the EEG-background (i. e. burst- or complete suppression) and early treatment initiation provides best chances for immediate and sustained seizure control



#### Status Update - What's new in the Manage ent of Status Epil


Alvarez, V et al. 2016. Neurology, 87(16), 1650-1659. Jordan, K. G., & Hirsch, L. J. 2006. Epilepsia, 47 Suppl 1, 41-45. Kaplan, P. W. (2000). Neurophysiol Clin, 30(6), 377-382. Kowalski, R. G. et al. 2012. Crit Care Med, 40(9), 2677-2684. Rossetti, A. O., et al. 2005. Arch Neurol, 62(11), 1698-1702. Stuter, R. et al. 2014. Neurology, 22(8), 656-664. Carona et al. 2020. Acta Neurol Scala, 2014.

## **Therapeutic Coma and Poor Outcome?**

## **Retrospective Studies**

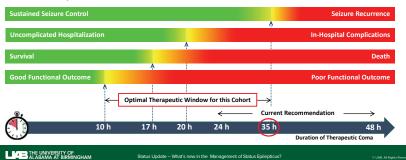
- · Prolonged hospitalizations/ICUstays which bears significant risk of in-hospital mortality and morbidity
- · 4-fold increased risk for infections
- 5.6-fold increased risk for new disabilities upon discharge
- 3 to 12-fold increased risk of death
- Importance to maximize treatment benefits and minimize treatmentexposure related risks

## **Prospective Study**

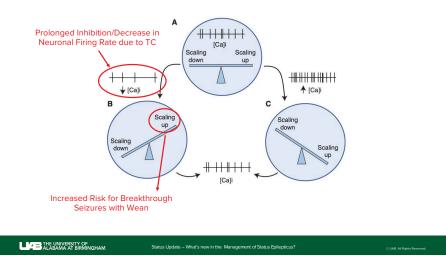


### THE UNIVERSITY OF

Muhlhofer et al. Epilepsia 2019;60:921-934

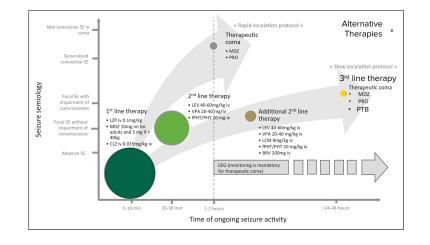

## Duration of Therapeutic Coma (TC) and Outcome in RSE

us Update – What's new in the Ma


- · Duration of TC independently associated with: - Prolonged duration of ventilation
  - Total length of stay
  - Increased risk for seizure recurrence
- · Duration of TC not independently associated with:
  - Poor functional neurologic outcome upon discharge In-hospital complications

    - Mortality

- Ictal and highly epileptogenic patterns on EEG (i. e. LPDs and seizures) during titration period of TC independently associated with seizure recurrence
- Higher doses of anesthetic (= deeper TC) independently associated with fewer in hospital complications, shorter duration of mechanical ventilation and total length of stay




# Homeostatic Plasticity Hypothesis



Rossetti, Andrea O., and Vincent Alvarez. Current Opinion in Neurology 34.2 (2021): 172-181.

# Suggested SE Treatment Algorithm





Ochoa, JG. et al. Epilepsy Currents (2021): 1535759721999670.

Studies on Treatment of SRSE



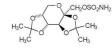
- "[...] insufficient evidence exists that any of the ASMs reviewed, inhalational anesthetics, ketogenic diet, acute VNS, brain surgery, and therapeutic hypothermia are effective treatments."
- "[...] Data supporting the use of these treatments for SRSE are scarce and limited mainly to small case series and case reports and are confounded by differences in patient populations, and comedications, among other factors."

# Ketamine – Just too Late to the Party?

|                                   | N episodes                    | Age<br>(years) | Top 3 etiologies                    | (days)    | Maximal dose<br>(mg/kg/h) | Response<br>rate | AEs                                                    | Mortality |
|-----------------------------------|-------------------------------|----------------|-------------------------------------|-----------|---------------------------|------------------|--------------------------------------------------------|-----------|
| This study                        | 68, all SRSE                  | 53 ± 19        | Anoxic<br>NORSE<br>Cerebrovascular  | 2 [1-5]   | 2.2 [0.2-10]              | 65%              | Not reported<br>No effect on ICP                       | 46%       |
| Dericioglu<br>et al <sup>13</sup> | 7, including 6 with<br>SRSE   | 66 [44-86]     | NORSE<br>Anoxic<br>Stroke           | 3 [2-7]   | 2 [1-5]                   | 56%              | Transient liver<br>failure                             | 29%       |
| Santoro et al <sup>14</sup>       | 3, all SRSE                   | 19 [3.5-54]    | NMDAR<br>encephalitis               | 9 [4-32]  | 3 [3-3]                   | 100%             | None                                                   | 33%       |
| Höfler et al <sup>15</sup>        | 42, including 39 with<br>SRSE | 67 [59-72]     | Anoxic<br>Cerebrovascular<br>NORSE  | 3 [2-7]   | 2.55 [?]                  | 64%              | None                                                   | 45%       |
| Basha et al <sup>16</sup>         | 11, all SRSE                  | 56 [33-68]     | Epilepsy<br>NORSE<br>Stroke         | 2 [0-11]  | 4 [1-5]                   | 36%              | Increased ICP                                          | 27%       |
| Sabharwal<br>et al <sup>17</sup>  | 67, all SRSE                  | 62 [8-85]      | Anoxic<br>Toxic-metabolic<br>Stroke | ?         | ? [1.5-10.5]              | 91%              | Not reported                                           | 39%       |
| Synowiec<br>et al <sup>18</sup>   | 11, all SRSE                  | 52 [22-82]     | Epilepsy                            | 5 [1-11]  | 1 [0.45-2.1]              | 64%              | No reported                                            | 18%       |
| Gaspard<br>et al <sup>12</sup>    | 60, including 56 with<br>SRSE | 24 [0.6-74]    | NORSE<br>Anoxic<br>Infections       | 9 [0-122] | 2.75 [0.05-10]            | 32%              | Tachycardia<br>Atrial fibrillation<br>No effect on ICP | 45%       |
| Rosati et al <sup>19</sup>        | 11, including 9 with<br>SRSE  | 5 [1.3-10]     | Epilepsy<br>NORSE                   | 6 [2-26]  | 2.4 [0.6-3.6]             | 66%              | None                                                   | 0%        |

\*Data are presented as median (range), count or percentage.

- · Works best in combination with GABA-ergic agents and when administered early
- Modulates some cytokines and might reduce neuroinflammation
- Quick on and off-set; less hypotension (promotion of sympathetic and respiratory stimulation)
- Ongoing multicenter, randomized, controlled, open-label trial comparing efficacy of KET in treatment of RSE in children compared to "standard of care" (i.e. MDZ and PRO) enrolling since 2016


#### THE UNIVERSITY OF ALABAMA AT BIRMINGHAM. Status Update – What's new in the Management of Status Epilepticus?

O UAB. AI Rights Reserved.

Fechner A. et al. Epilepsia. 2019; 60(12):2448-2458. Ho et al. Neurocrit Care (2019) 31:24–29. Lim, SN. et al. Journal of Neurology. (2021): 1-14.

## Alternative Antiseizure Medications

### Topiramate (Topamax, TPM)



- Retrospective Review of TPM adjunct in 106 patients with RSE (66) and SRSE (40)
- Median initial dose: 100 mg/day Median maintenance: 400 mg/day
- Median treatment duration: 12 days
- · Efficacy:
  - RSE: 32%
  - SRSE: 20%
- Hyperammonemia (up to 36%, particularly in combo with VPA)

### Perampanel (Fycompa, PER)



- Few retrospective studies (n = 23 to 81) analyzing efficacy and safety of PER as add-on for RSE and SRSE
- Median initial dose: 4 mg/day Median maintenance: 12 mg/day
- Efficacy: 17 to 36%
- High loading (up to 24 mg) and low maintenance dose (between 8 and 12 mg) with better response
- Potentially more effective in CSE, focal motor SE and post-anoxic SRSE

### 

Sculler and Gaspard. Seizure: European Journal of Epilepsy. 68 (2019) 72-78. Khawaja, A. M. et al. 2015. Epilepsy Behav, 47, 17-23.

## **NORSE** and Immunotherapy

## **New-onset RSE**

- RSE w/o active epilepsy or any clear acute or active structural, toxic or metabolic cause
- Febrile infection-related epilepsy syndrome (FIRES): febrile illness between 2 weeks and 24 h prior to NORSE
- Mainly affecting school-age children and young adults
- 66% with prodrome of flu-like symptoms preceding NOSRE by 1-14 days
- Starts w/ infrequent and brief repeated focal seizures with secondary bilateralization → SRSE
- Short-term mortality: 12-27%
   Often long-term disability and epilepsy



- 50% potentially caused by autoimmune encephalitis; treatment delay leading to worse outcomes
- Pooled analysis of 91 patients: 42% versus 20% with favorable outcome following immunotherapy
- Immunotherapy less effective in children potentially higher impact of ketogenic diet

atus Epilepticus?

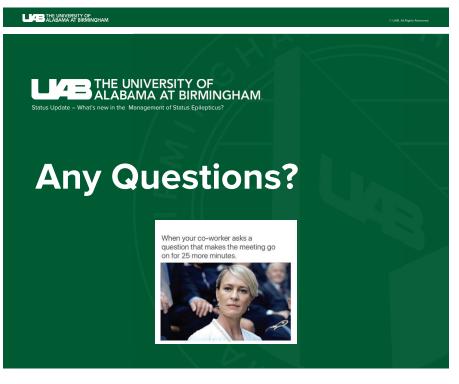
## **Other Alternative Treatments**

| Outcome                                                        | Hypothermia<br>(N=138) | (N=130) | Odds Ratio<br>(95% CI)† | P<br>Value |
|----------------------------------------------------------------|------------------------|---------|-------------------------|------------|
| Primary outcome: GOS score of 5 at day 90<br>— no. (%) (\$     | 67 (49)                | 56 (43) | 1.22 (0.75-1.99)        | 0.43       |
| Secondary outcomes                                             |                        |         |                         |            |
| Total seizure duration min                                     |                        |         |                         |            |
| Median                                                         | 75                     | 90      | -                       | 0.26       |
| Interquartile range                                            | 37-180                 | 45-255  |                         |            |
| Progression to EEG-confirmed status epilepticus<br>— no. (%)§  | 15 (11)                | 29 (22) | 0.40 (0.20-0.79)        | 0.009      |
| Refractory status epilepticus from day 1 to day 3<br>— no. (%) |                        |         |                         |            |
| Refractory status epilepticus on day 1¶                        | 43 (31)                | 50 (38) | 0.68 (0.40-1.15)        | 0.15       |
| Super-refractory status epilepticus                            | 23 (17)                | 30 (23) | 0.64 (0.34-1.19)        | 0.16       |



### Hypothermia (HT)

Multicenter trial randomly assigning 270 critically ill patients with CSE requiring intubation to either standard of care (SOC) + HT or SOC alone:


- No difference in functional outcome at 90 days
- Rate of progression to EEG-confirmed SE, RSE or SRSE lower in HT group, yet not significant and higher complication rate in HT group
- Common complications: DVT, coagulopathies and infections

### Ketogenic diet (KD)

- Only one prospective multicenter study investigating the feasibility, safety, and efficacy of a KD for SRSE in adults 14 patients w/ KD treatment: 11 (78%) had resolution of SRSE, with a median of 5 days
- Only retrospective analysis of KD efficacy in SRSE in children (n = 10 to 16) – 52-cessation and regain of consciousness: 56 to 70% within 2 to 4 days of reaching ketonuria

Electroconvulsive therapy (ECT): 8 case series (2-11 patients): SRSE cessation in 80%; complete recovery in 27%

Neuromodulation (VNS, TMS, DBS): only by retrospective small case series and case reports; SRSE aborted in >80% - no randomized, prospective, and controlled trials



## References

- Trinka, E., Cock, H., Hesdorffer, D., Rossetti, A. O., Scheffer, I. E., Shinnar, S. et al. (2015). A definition and classification of status epilepticus– Report of the ILAE Task Force on Classification of Status Epilepticus. *Epilepsia*, 56(10), 1515-1523.
- Kantanen, A.-M., Reinikainen, M., Parviainen, I., Ruokonen, E., Ala-Peijari, M., Bäcklund, T. et al. (2015). Incidence and mortality of superrefractory status epilepticus in adults. *Epilepsy & Behavior, 49*, 131-134.
- Ferlisi, M., & Shorvon, S. (2012). The outcome of therapies in refractory and super-refractory convulsive status epilepticus and recommendations for therapy. *Brain*, 135(Pt 8), 2314-2328.
- Giovannini G, Monti G, Polisi MM, et al. A one-year prospective study of refractory status epilepticus in Modena, Italy. Epilepsy Behav 2015:49:141–145
- Strzelczyk A, Ansorge S, Hapfelmeier J, Bonthapally V, Erder MH, Rosenow F. Costs, length of stay, and mortality of super-refractory status epilepticus: a population-based study from Germany. Epilepsia 2017;58:1533–1541.
- Santamarina E, Gonzalez M, Toledo M, et al. Prognosis of status epilepticus (SE): relationship between SE duration and subsequent development of epilepsy. Epilepsy Behav 2015;49:138–140.
- Lu, Mei, et al. "Epidemiology of status epilepticus in the United States: A systematic review." Epilepsy & Behavior 112 (2020): 107459.
- Sadeghi, Mahsa, et al. "Outcomes of status epilepticus and their predictors in the elderly–a systematic review." Seizure(2020).
- Hirsch, Lawrence J.; Gaspard, Nicolas CONTINUUM: Lifelong Learning in Neurology. 19(3, Epilepsy):767-794, June 2013.
- Chen, J. W. Y., & Wasterlain, C. G. (2006). Status epilepticus: pathophysiology and management in adults. The Lancet Neurology, 5(3), 246-256
- Chen, J. W. Y., Naylor, D. E., & Wasterlain, C. G. (2007). Advances in the pathophysiology of status epilepticus. Acta Neurologica Scandinavica, 175(s186), 7-15.
- Murdoch, D. (2007). Mechanisms of status epilepticus: an evidence-based review. Current opinion in neurology, 20(2), 213-216.
- Kim, Hyo Jae, et al. "The timelines of MRI findings related to outcomes in adult patients with new-onset refractory status epilepticus." *Epilepsia* 61.8 (2020): 1735-1748.
- Young, B. G., Jordan, K. G., & Doig, G. S. (1996). An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring an investigation of variables associated with mortality. *Neurology*, 47(1), 83-89.
- Alvarez, V., Drislane, F. W., Westover, M. B., Dworetzky, B. A., & Lee, J. W. (2015). Characteristics and role in outcome prediction of continuou EEG after status epilepticus: A prospective observational cohort. *Epilepsia*, 56(6), 933-941.
- Zeiler FA, Matuszczak M, Teitelbaum J, Gillman LM, Kazina CJ. Electroconvulsive therapy for refractory status epilepticus: a systematic review. Seizure 2016; 35: 23-32.
  - Godau J, Bharad K, Rösche J, Nagy G, Kästner S, Weber K, Bösel J. Automated Pupillometry for Assessment of Treatment Success in Nonconvulsive Status Epilepticus. Neurocrit Care. 2021 Jul 30. doi: 10.1007/s12028-021-01273-6. Epub ahead of print. PMID: 34331202.

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

## References cont.

- Hirsch, L. J., Brenner, R. P., Drislane, F. W., So, E., Kaplan, P. W., Jordan, K. G. et al. (2005). The ACNS subcommittee on research terminology for continuous EEG monitoring: proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. *Journal of clinical neurophysiology*, 22(2), 128-135.
- Towne AR, Waterhouse EJ, Boggs JG, et al. Prevalence of non- convulsive status epilepticus in comatose patients. Neurology. 2000;54(2):340 345.
- O'Rourke, D., Chen, P. M., Gaspard, N., Foreman, B., McClain, L., Karakis, I. et al. (2016). Response rates to anticonvulsant trials in patients with triphasic-wave EEG patterns of uncertain significance. *Neurocritical care, 24*(2), 233-239.
- Rodríguez, V., Rodden, M. F., & LaRoche, S. M. (2016). Ictal-interictal continuum: A proposed treatment algorithm. *Clinical Neurophysiology*, 1724). 2056-2064
- Rossetti, A. O., Logroscino, G., & Bromfield, E. B. (2006). A clinical score for prognosis of status epilepticus in adults. Neurology, 66(11), 1736-1738.
- González-Cuevas, M., Santamarina, E., Toledo, M., Quintana, M., Sala, J., Sueiras, M. et al. (2016). A new clinical score for the prognosis of status epilepticus in adults. *European journal of neurology*, 23(10), 1534-1540.
- Hanin, Aurélie, et al. "Continuous EEG monitoring in the follow-up of convulsive status epilepticus patients: A proposal and preliminary validation of an EEG-based seizure build-up score (EaSiBUSSEs)." Neurophysiologie Clinique 51.2 (2021): 101-110.
- Vespa, Paul M., et al. "Evaluating the clinical impact of rapid response electroencephalography: the DECIDE multicenter prospective observational clinical study." Critical care medicine/48.9 (2020): 1249.
- Hobbs, Kyle, et al. "Rapid bedside evaluation of seizures in the ICU by listening to the sound of brainwaves: a prospective observational clinical trial of Ceribell's brain stethoscope function." Neurocritical care 29.2 (2018): 302-312.
- Wright, Norah MK, et al. "Evaluating the utility of Rapid Response EEG in emergency care." Emergency Medicine Journal (2021).
- Rossetti, Andrea O., and Vincent Alvarez. "Update on the management of status epilepticus." Current Opinion in Neurology 34.2 (2021): 172-181.
- Almohaish, Sulaiman, Melissa Sandler, and Gretchen M. Brophy. "Time Is Brain: Acute Control of Repetitive Seizures and Status Epilepticus Using Alternative Routes of Administration of Benzodiazepines." *Journal of Clinical Medicine* 10.8 (2021): 1754.
- Guterman, Elan L., et al. "Prehospital midazolam use and outcomes among patients with out-of-hospital status epilepticus." Neurology 95.24 (2020): e3203-e3212.
- Gaínza-Lein, Marina, et al. "Timing in the treatment of status epilepticus: from basics to the clinic." Seizure 68 (2019): 22-30.
- Kämppi, Leena, et al. "The essence of the first 2.5 h in the treatment of generalized convulsive status epilepticus." Seizure 55 (2018): 9-16.
- Lambrecq, V., Villéga, F., Marchal, C., Michel, V., Guehl, D., Rotge, J. Y. et al. (2012). Refractory status epilepticus: electroconvulsive therapy as a possible therapeutic strategy. *Seizure*, 2(9), 661-664.
- Kamousi, Baharan, et al. "Monitoring the Burden of Seizures and Highly Epileptiform Patterns in Critical Care with a Novel Machine Learning Method." Neurocritical Care 34.3 (2021): 908-917. Status Update – What's new in the Management of Status Epilepticus?

LABAMA AT BIRMINGHAM.

## References cont.

- Kapur, J., Elm, J., Chamberlain, J. M., Barsan, W., Cloyd, J., Lowenstein, D., ... & Fountain, N. (2019). Randomized trial of three anticonvulsant medications for status epilepticus. *New England Journal of Medicine*, 381(22), 2103-2113.
- Dalziel SR, Borland ML, Furyk J, et al. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet. 2019;393(10186):2135-2145.
- Lyttle MD, Rainford NEA, Gamble C, et al. Levetiracetam versus phenytoin for second-line treatment of paediatric co (EcLiPSE): a multicentre, open-label, randomised trial. Lancet. 2019;393(10186):2125-2134.
- Chamberlain, James M., et al. "Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial." The Lancet 395.10231 (2020): 1217-1224.
- Hall, Elizabeth A., James W. Wheless, and Stephanie J. Phelps. "Status epilepticus: the slow and agonizing death of phenytoin." J Pediati Pharmacol Ther 2020 Vol. 25 No. 1. Pages 4-6.
- Mundlamuri RC, Sinha S, Subbakrishna DK, et al. Management of generalised convulsive status epilepticus (SE): a prospective randomisec controlled study of combined treatment with intravenous lorazepam with either phenytoin, sodium valproate or levetiracetam—pilot study. Epilepsy Res. 2015;114(1):52-58.
- Vincent et al "Prehosnital treatm Navarro, Vincent, et al. "Prehospital treatment with levetiracetam plus clonazepam or placebo plus clonazepam in status epilept (SAMUKeppra): a randomised, double-blind, phase 3 trial." *The Lancet Neurology* 15.1 (2016): 47-55.
- Brigo, Francesco, et al. "Intravenous brivaracetam in the treatment of status epilepticus: a systematic review." CNS drugs 33.8 (2019): 771-781.
- Husain, Aatif M., et al. "Randomized trial of lacosamide versus fosphenytoin for nonconvulsive seizures." Annals of neurology. 83.6 (2018): 1174-1185.
- Glauser, T., Shinnar, S., Gloss, D., Alldredge, B., Arya, R., Bainbridge, J. et al. (2016). Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the Guideline Committee of the American Epilepsy Society. *Epilepsy currents, 16*(1), 48-61.
- Brophy, G. M., Bell, R., Claassen, J., Alldredge, B., Bleck, T. P., Glauser, T. et al. (2012). Guidelines for the evaluation and management of status epilepticus. *Neurocrit Care*, 17(1), 3-23.
- Meierkord, H., Boon, P., Engelsen, B., Göcke, K., Shorvon, S., Tinuper, P. et al. (2010). EFNS guideline on the management of status epilepticus in adults. Eur J Neurol, 17(3), 348-355.
- Vossler, David G., et al. "Treatment of refractory convulsive status epilepticus: a comprehensive review by the American Epilepsy Society Treatments Committee." *Epilepsy currents*20.5 (2020): 245-264.
- Ochoa, Juan G., et al. "Treatment of Super-Refractory Status Epilepticus: A Review." Epilepsy Currents (2021): 1535759721999670
- Claassen, J., Hirsch, L. J., Emerson, R. G., & Mayer, S. A. (2002). Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. *Epilepsia*, 43(2), 146-153.
- Stavropoulos, Ioannis, Ho Lim Pak, and Antonio Valentin. "Neuromodulation in Super-refractory Status Epilepticus." Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society (2021).

Status Update – What's new in the Manage

### 

## References cont.

- Rossetti, A. O., Milligan, T. A., Vulliémoz, S., Michaelides, C., Bertschi, M., & Lee, J. W. (2011). A randomized trial for the treatment of refractory status epilepticus. *Neurocrit Care*, 14(1), 4-10.
- Shorvon, S., & Ferlisi, M. (2011). The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. *Brain*, 134(Pt 10), 2802-2818.
- Alvarez, V., Lee, J. W., Westover, M. B., Drislane, F. W., Novy, J., Faouzi, M. et al. (2016). Therapeutic coma for status epilepticus: Differing practices in a prospective multicenter study. *Neurology*, 87,16), 1650-1659.
- Jirsch, J., & Hirsch, L. J. (2007). Nonconvulsive seizures: developing a rational approach to the diagnosis and management in the critically ill population. *Clinical neurophysiology*, 118(8), 1660-1670.
- Kowalski, R. G., Ziai, W. C., Rees, R. N., Werner, J. K., Kim, G., Goodwin, H. et al. (2012). Third-line antiepileptic therapy and outcome in status epilepticus: the impact of vasopressor use and prolonged mechanical ventilation. *Crit Care Med*, 40(9), 2677-2684.
- Kaplan, P. W. (2000). No, some types of nonconvulsive status epilepticus cause little permanent neurologic sequelae (or: "the cure may be worse than the disease"). Neurophysiol Clin, 30(6), 377-382.
- Rossetti, A. O., Logroscino, G., & Bromfield, E. B. (2005). Refractory status epilepticus: effect of treatment aggressiveness on prognosis. Arch Neurol, 62(11), 1698-1702.
- Muhlhofer, Wolfgang G., et al. "Duration of therapeutic coma and outcome of refractory status epilepticus." Epilepsia 60.5 (2019): 921-934.
- Turrigiano, Gina. "Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function." Cold Spring Harbor perspectives in biology 4.1 (2012): a005736.
- Fechner A, Hubert K, Jahnke K, et al. Treatment of refractory and superrefractory status epilepticus with topiramate: a cohort study of 106 patients and a review of the literature. Epilepsia. 2019; 60(12):2448-2458.
- Ho, Chen-Jui, et al. "Perampanel treatment for refractory status epilepticus in a neurological intensive care unit." Neurocritical care 31.1 (2019): 24.29
- Lim, Siew-Na, et al. "Efficacy and safety of perampanel in refractory and super-refractory status epilepticus: cohort study of 81 patients and literature review." Journal of Neurology/2021; 1-14.
- Rosati A, Ilvento L, L'Erario M, et al. Efficacy of ketamine in refractory convulsive status epilepticus in children: a protocol for a sequential design, multicentre, randomised, controlled, open- label, non-profit trial (KETASER01). BMJ open. 2016;6(6): e011565.
- Alkhachroum et al. Ketamine to treat super-refractory status epilepticus. Neurology 2020;95:e2286-e2294
- Sculier, Claudine, and Nicolas Gaspard. "New onset refractory status epilepticus (NORSE)." Seizure 68 (2019): 72-78.
- Katz et al. Pearls and Pitfalls of Introducing Ketogenic Diet in Adult Status Epilepticus: A Practical Guide for the Intensivist. J. Clin. Med. 2021, 10, 881.